
Confinement with Origin Web Labels
(COWL)

Deian Stefan

!

!

http://cowl.ws

Today

Discretionary
Access
Control

SOP
CSP

CORS

➠ Crucial for securing the Web!

 But fall short in a few cases…

Mutually distrusting services

docs.google.com

eff.org

Tightly-coupled libraries

chase.com

Third-party mashups

hsbc.com

mint.cc

chase.com

Libraries with narrow APIs

chase.com

sketchy.ru

Where DAC falls short…

How does DAC fall short?

Forces choice between functionality and privacy

➤ E.g., password strength checker library  
 
 
 

➤ Privacy: use CSP+sandbox to disallow communication

➤ Functionality: allow checker to fetch common pass.  

chase.com sketchy.ru sketchy.ru

p4ssw0rd

weak!

?

How does DAC fall short?

Forces choice between functionality and privacy

➤ E.g., mint.com-like client-side third-party mashup  
 
 
 

➤ Privacy: bank doesn’t give mint.cc access to data

➤ Functionality: bank cedes user data to mint.cc  
 (or worse: user cedes bank credentials)

mint.cc
chase.com hsbc.com

? ?

Why does DAC fall short?

• Fundamentally

➤ Apps rely on and use third-party code

➤ This code computes on sensitive data

• DAC restricts who can access data

➤ Not what code can do with the data once granted
access!

Confinement (at a glance)

Idea: impose restrictions on how code uses data

➤ E.g., it is safe to fetch list of common password before
looking at password, but once password is inspected
➠ restrict communication!  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd

Confinement (at a glance)

Idea: impose restrictions on how code uses data

➤ E.g., it is safe to fetch list of common password before
looking at password, but once password is inspected
➠ restrict communication!  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd ❌

Confinement (at a glance)

Idea: impose restrictions on how code uses data

➤ E.g., it is safe to fetch list of common password before
looking at password, but once password is inspected
➠ restrict communication!  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd

p4ssw0rd ❌p4ssw0rd

Confinement (at a glance)

Idea: impose restrictions on how code uses data

➤ E.g., it is safe to fetch list of common password before
looking at password, but once password is inspected
➠ restrict communication!  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd

p4ssw0rd ❌
weak!

p4ssw0rd

Extend browser with

1. Labels: policies specified in terms of origins

➤ Way for developers to express security concerns

2. Label tracking/enforcement

3. Privileges: extend SOP’s notion of trust

➤ Avoid being confined for reading own data

COWL design

Labels

Label specifies, in terms of origin(s), who cares
about the data

➤ E.g., data sensitive to Chase: Label(“chase.com”)

➤ E.g., data sensitive to Alice on Twitter [like sub-origin]:  
Label(“twitter.com”).or(“@alice”)

➤ E.g., data sensitive to both Chase and HSBC:
Label(“chase.com”).and(“hsbc.com”)

Label tracking

• COWL tracks labels at context granularity

➤ Pages, iframes, workers, and  
light-weight workers (new LWorker API)

• Messages can be labeled differently from context

➤ Both servers & JavaScript can label messages

chase.com

chase.com

chase.com

public

p4ssw0rd

chase.com

chase.com

chase.com

p4ssw0rd

Label enforcement

chase.com
sketchy.ru

p4ssw0rd
chase.com

❌

sketchy.ruchase.com

Browser-server communication must respect labels!  
 
 
 

Label enforcement

chase.com

sketchy.ru

sketchy.ru

chase.com sketchy.ru

public

❌

Cross-context communication must respect labels!  
 
 
 

Label enforcement

chase.com

sketchy.ru

sketchy.ru

chase.com sketchy.ru

public

❌

Cross-context communication must respect labels!  
 
 
 

Label enforcement

chase.com

sketchy.ru

sketchy.ru

chase.com sketchy.ru

public
p4ssw0rd

❌

chase.com

❌

Cross-context communication must respect labels!  
 
 
 

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

public

sketchy.ru
sketch.rup4ssw0rd

public

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd

public

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd

public

p4ssw0rd

chase.com

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

chase.com

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd ❌

public

p4ssw0rd

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

chase.com

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd ❌

public

p4ssw0rd

weak!

Privileges

• Page dictates how data of its origin gets
disseminated

➤ As in SOP: page is trusted with its own data

• COWL makes this explicit with privileges

➤ Context has unforgeable Privilege object

➤ No confinement by labels corresponding to privileges

➤ Unlike SOP: privileges can be dropped & delegated

Summary: COWL design

• Origins are a natural way to specify policy

➤ Conjunction specifies concern of multiple origins

➤ Disjunctions (or) specifies “sub-origin concerns”

• Leverage contexts as security boundaries

➤ Impose restrictions on code by labeling messages

➤ Use LWorkers to confine code (vs. <script>’s)

What can we do with this?

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com

❌

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com hsb.com

❌❌

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com hsb.com

❌❌

Demo: third-party library

Implementations

• DOM-level API for both Firefox and Chromium

➤ No changes to JavaScript engines

➤ Maintain existing communication APIs

➤ For each page COWL only enabled on first use of API

• Gecko and Blink: roughly 4K lines of C++ each

• Current status: porting to latest FF & Chromium

Label enforcement

• Piggy-backing on CSP+sandbox

➤ CSP effectively allows us to control where context
can disseminate data

➤ We adjust underlying context CSP according to label
of context

• Cross-context communication

➤ Gecko: new compartment wrappers

➤ Blink: modified DOM bindings

Evaluation: Performance

• Overhead of securing a mashup service?

• Overhead of compartmentalization?

• Will adding COWL slow the existing Web?

Evaluation: Performance

• Overhead of securing a mashup service?

• Overhead of compartmentalization?

• Will adding COWL slow the existing Web?

 Worst-case (loopback, trivial app code) 
 end-to-end page load: roughly 16% [16ms]  
!

 For real apps: relative overhead is small!

Deployability

• High degree of backward compatibility

➤ Does not affect pages that do not use COWL API, 
functionality or performance-wise

• Reuse existing concepts (origins, contexts)

➤ Expect it to be friendly to developers

Intersection with other proposals

• Issue 69: Overt channel control in CSP

• Scriptable CSP proposal

• Sub-origins proposal

➤ Key difference: labels are explicit and visible

• Sandboxed Cross-Origin Workers

• LWorkers may be useful for bookmarklets?

Future direction

• LWorkers can access parent DOM if given
privilege

➤ Effectively: reverse sandbox

➤ Next step: tie in with shadow DOM to allow
untrusted code in LWorker to modify part of page

Thanks!
http://cowl.ws

